Tag: Analysis

Data analytics plays a crucial role in clinical trial design and analysis by providing valuable insights into the effectiveness of new treatments and therapies.

The role of data analytics in clinical trial design and analysis

What is the role of data analysis in clinical trials? Can there be better clinical trial data analysis using R and other technologies? Is there a case for using big data analysis in clinical trials? Experts would certainly say Yes to all these questions. Clinical trials themselves have gone through sweeping changes over the last decade, with several new developments in immunotherapy, stem cell research, genomics, and cancer therapy among numerous segments. At the same time, there has been a transformation in the implementation of clinical trials and the process of identifying and developing necessary drugs.  To cite a few examples of the growing need for clinical trial data analysis, researchers gain quicker insights through the evaluation of databases of real-world patient information and the generation of synthetic control arms, while identifying drug targets alongside. They can also evaluate drug performance post-regulatory approvals in this case. This has lowered the cost and time linked to trials while lowering the overall burden on patients and enabling faster go-to-market timelines for drugs too.  What is driving data analysis in clinical trials?  Clinical trial data analysis is being majorly driven by AI (artificial intelligence) along with ML (machine learning), enabling the capabilities of collection, analysis, and production of insights from massive amounts of real-time data at scale, which is way faster than manual methods. The analysis and processing of medical imaging data for clinical trials, along with tapping data from other sources is enabling innovation of the entire process while being suitable for supporting the discovery procedure in terms of quickening the trials, go-to-market approaches, and launches.  The data volumes have greatly increased over the last few years, with more wearable usage, genomic and genetic understanding of individuals, proteomic and metabolomic profiles, and detailed clinical histories of patients derived from electronic health records. Reports indicate 30% of the data volumes of the world are generated by the global healthcare industry. The CAGR (compound annual growth rate) for healthcare data will touch 36% by the year 2025 as well. The volume of patient data in clinical systems has already grown by a whopping 500% to 2020 from 2016.  Data analysis in clinical trials- What else should you note?  Here are a few factors that are worth noting:  Synthetic control arm development  The role of data analysis in clinical trials is even more evident when one considers the development of synthetic control arms. Clinical drug discovery and trials may be fast-tracked while enhancing success rates and designs of clinical trials. Synthetic control arms may help in overcoming challenges linked to patient stratification and also lower the time required for medical treatment development. It may also enable better recruitment of patients through resolving concerns about getting placebos and enabling better management of diverse and large-sized trials.  Synthetic control arms tap into both historical clinical trials and real-world data for modelling patient control groups and doing away with the requirement for the administration of placebo treatments for patients which may hinder their health. It may negatively impact patient outcomes and enrolment in trials. The approach may work better for rare ailments where populations of patients are tinier and the lifespan is also shorter owing to the disease’s virulent nature. Using such technologies for clinical trials and bringing them closer to end-patients may significantly lower the overall inconveniences of travelling to research spots/sites and also the issue related to consistent tests.  ML and AI for better discovery of drugs ML and AI may enable a quicker analysis of data sets gathered earlier and at a swifter rate for clinicians, ensuring higher reliability and efficiency in turn. The integration of synthetic control arms in mainstream research will offer new possibilities in terms of transforming the development of drugs.  With an increase in the count of data sources including health apps, personal wearables and other devices, electronic medical records, and other patient data, these may well become the safest and quickest mechanisms for tapping real-world data for better research into ailments with sizeable patient populations. Researchers may achieve greater patient populations which are homogenous and get vital insights alongside. Here are some other points worth noting:  The outcomes of clinical trials are major metrics with regard to performance, at least as far as companies and investors are concerned. They are also the beginning of collaborations between patients, groups, and the healthcare sector at large. Hence, there is a clearly defined need for big data analysis in clinical trials as evident through the above-mentioned aspects.  FAQs How can data analytics be used in clinical trial design and analysis? Data analytics can be readily used for clinical trial design and analysis, expanding patient selection criteria, swiftly sifting through various parameters and helping researchers better target matching patients who match the criteria for exclusion and inclusion. Data analysis methods also enable better conclusions from data while also improving clinical trial design due to better visibility of the possible/predicted risk-reward outcomes.  What are the benefits of using data analytics in clinical trial design and analysis? The advantages of using data analytics in clinical trial design and analysis include the integration of data across diverse sources, inclusive of third parties. Researchers get more flexibility in terms of research, finding it easier to analyze clinical information. Predictive analytics and other tools are enabling swifter disease detection and superior monitoring.  What are the challenges of using data analytics in clinical trial design and analysis? There are several challenges in using data analytics for the analysis and design of clinical trials. These include the unavailability of skilled and experienced resources to implement big data analytics technologies, data integration issues, the uncertainty of the management process, storage and quick retrieval aspects, confidentiality and privacy aspects and the absence of suitable data governance processes.  What are the best practices for implementing data analytics in clinical trial design and analysis? There are numerous best practices for the implementation of data analytics for the analysis and design of clinical trials. These include good clinical data management practices, clinical practices, data governance

Read More »

Creating Better User Experiences and Better Products with Data

In 2018, it almost sounds repetitive to say that user experience trumps features, and designing a better product depends on understanding what it feels like to use it, and best to design a product that can be used intuitively. Intuitive user experience and a great product depend on a number of things including great design. However, there is something far more important and basic than design, which is data. Data in the form of customer feedback, customer expectation and motivations, system performance and errors, and the ability to make sense of data is collected over weeks, months, and years in the right context is what helps develop great products and superior UX. Yet, data is often ignored or given just lip service simply because product designers and developers do not have the resources or interest to process complex datasets concerning customer feedback and expectations. Let us admit it. Customer feedback, surveys, and reviews build up over a period of time, and most companies simply toss the accumulated data to the side, quite literally. Yet, it is this very data that is needed to create better experiences and better products. Why the reluctance to use data when it is so freely available? Every business gathers data, even if they do not realize that they are. However, most companies are reluctant to use the data that is already available on their systems. This data may stem from customer feedback forms, web traffic figures, purchase trends, social media conversations, and just about anything that results due to the intersection of business, customer, and the product. The reluctance stems from distrusting data and feeling overloaded by data that is continuously collected by systems. With many products being “intelligent”, data overload has led to data daze, as a Forbes article puts it. The same article describes data daze resulting in analysis paralysis. The answer is simple. Most companies hesitate using data or downrightly avoid anything remotely related to data because they feel paralyzed by it. How can a business avoid this state of data paralysis, and confront it to make it something useful? 84% of CEOs do not trust the quality of data they have on hand It is psychologically proven that too much information reduces cognitive ability process it. This means, too much data leads to data daze. Overanalyzing data can lead to analysis paralysis, similar to what happens to an individual with psychological difficulties. While distrusting the quality of data and feeling overwhelmed by data that is available is natural, so is feeling paralyzed by over-analysis of data. The truth is, no company can process all the data that it collects. It needs to know what it wants to know with data that is already available, and how it is going to process it. This brings us to the question of processing and placing data in meaningful contexts. How to place data in meaningful contexts When it comes to understanding and using data, context matters more than anything else. Cognitive overload of information results in inefficient use of that information. For example, a boy that is given a dozen books on his birthday may not value them, or even feel intimidated by them, even if those books are classics. However, if he learns to categories those books in a shelf, or is helped to do so by someone who understands those books, he will not only pick up those books, by also put to use what he learns from them. Similarly, every business must put the data that they collect into context. Without placing data in context and simply processing it using analytical tools will result in an analysis that may not be relevant at all, resulting in analysis paralysis. With the Internet of Things, location-based applications, wearable tech, and sensors contributing to the data deluge, one must really know how to place all that data in context. While this may seem difficult, it is not impossible. Ask yourself these questions: What am I trying to improve? What might my customers want? How can make it easier for customers to use my product? Which variables could help me understand what customers want? How can reduce the amount of data that is analyzed? As you can see, asking yourself or other C-level executives in your company will help you to develop a frame of reference with which you can handle data. Once you know what you are looking for, it is easier to find it. Usually, you can find all these answers with the assistance of your customers plus with a little help from your friends (IT department and technology). 3 important sources of data to develop better products and UX As you might have learned to question yourself in the previous section, the answer to your data quandary lies with your customers and your IT department. Collect customer feedback: To make sure that you understand your customers better so that you can design a product that is inherently more intuitive to use, you should start collecting customer feedback. Customer feedback can be collected in umpteen numbers of ways, both online and offline. Customer feedback, opinions, and reviews can be processed using linguistic and data crunching tools so that you understand the prevailing opinion about your product, and how it can be improved. This axiom holds true whether you have designed an application as a product, or an actual physical table as your product of choice. The fewer customers you have, the more opportunities you have to seek detailed and intimate feedback from them. If you have a large number of customers, feedback forms can be statistically analyzed. While this may sound time-consuming, which it inherently is, improving user experience and creating better products are ongoing processes too. Customer expectations, and what motivates them: Next, make sure that the features that you offer alongside your product meet customer expectations and motivations. This is the part that answers “why does my customer want to use my product” question. Knock the door of your IT department:

Read More »
MENU
CONTACT US

Let’s connect!

    Privacy Policy.

    Almost there!

    Download the report

      Privacy Policy.